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Here, we compare the distributions of main chain (�,�) angles (i.e.,
Ramachandran maps) of the 20 naturally occurring amino acids in
three contexts: (i) molecular dynamics (MD) simulations of Gly-
Gly-X-Gly-Gly pentapeptides in water at 298 K with exhaustive
sampling, where X � the amino acid in question; (ii) 188 indepen-
dent protein simulations in water at 298 K from our Dynameomics
Project; and (iii) static crystal and NMR structures from the Protein
Data Bank. The GGXGG peptide series is often used as a model of
the unstructured denatured state of proteins. The sampling in the
peptide MD simulations is neither random nor uniform. Instead,
individual amino acids show preferences for particular conforma-
tions, but the peptide is dynamic, and interconversion between
conformers is facile. For a given amino acid, the (�,�) distributions
in the protein simulations and the Protein Data Bank are very
similar and often distinct from those in the peptide simulations.
Comparison between the peptide and protein simulations shows
that packing constraints, solvation, and the tendency for particular
amino acids to be used for specific structural motifs can overwhelm
the ‘‘intrinsic propensities’’ of amino acids for particular (�,�)
conformations. We also compare our helical propensities with
experimental consensus values using the host–guest method,
which appear to be determined largely by context and not neces-
sarily the intrinsic conformational propensities of the guest resi-
dues. These simulations represent an improved coil library free
from contextual effects to better model intrinsic conformational
propensities and provide a detailed view of conformations making
up the ‘‘random coil’’ state.

coil library � Dynameomics � molecular dynamics � protein folding �
host-guest

Protein secondary structure was predicted before the atomic
structures of protein were determined (1–3). Conformational

preferences of the amino acids were also estimated very early on,
beginning with Ramachandran’s ‘‘map’’ in 1963, ‘‘based solely on
repulsive van der Waals’’ forces in dipeptides (4, 5). Remarkably,
these predictions regarding structure and conformational prefer-
ences were later largely validated in protein crystal structures (6–8).
In the protein folding field, these preferences are seen as both
means of excluding regions of conformational space and as driving
forces for the formation of secondary structure, both of which limit
and bias the necessary search of conformational space required
during protein folding.

(�,�) dihedral angle distributions are increasingly used to check
the validity of structures. Although there can be no doubt about the
general tendency of amino acids in globular proteins to populate
some regions of (�,�) space relative to others, the use of such
distributions to judge and refine structures leads to dangerous
circular reasoning. That is, (�,�) preferences are used as tests of
crystal structures, and those very crystal structures are then used to
define and support the Ramachandran (�,�) angle distributions.

Many experimental studies have addressed amino acid confor-
mational propensities through the host–guest approach in small
peptides and proteins whereby the amino acid in question is
introduced into a homo- or heteropolymer, and the effect of the

perturbation on the ‘‘host’’ is evaluated and attributed to the
‘‘guest’’ amino acid (9). Unlike the behavior of (�,�) angles in
proteins, short peptides in solution generally do not settle down into
one conformational state over time; rather, they represent a dy-
namic ensemble of conformers in rapid equilibrium (10). As such,
care must be taken that the host does not determine the properties
of the guest, as discussed in depth below. Determination of intrinsic
propensities in small peptides can provide insight into the possible
preferred conformations of the polypeptide chain in the unfolded
state, which may in turn direct folding (11). In this regard, polypro-
line II (PII) has received much attention (12).

Computers are now fast enough and molecular dynamics (MD)
simulations are reliable enough to address these issues at high
resolution to obtain information about the underlying conforma-
tional ensembles giving rise to the experimental observables. To this
end, we describe exhaustive sampling of amino acid conformations
within a solvated end-capped Gly-Gly-X-Gly-Gly pentapeptide to
investigate the intrinsic conformational preferences of the 20
naturally occurring amino acids. This and similar peptides have
been widely used as models for the unstructured denatured states
of proteins (10–15). We begin with control peptide simulations to
investigate the effect of neighboring groups and the environment on
conformation. We then compare the distributions of (�,�) angles
in GGXGG peptide simulations with those of experimental struc-
tures and a set of MD simulations of 188 native globular proteins
with different folds to determine the intrinsic conformational
propensities of the amino acids and how these propensities relate to
what is observed in proteins.

Results and Discussion
To investigate the intrinsic conformational preferences of the
amino acids, MD simulations were performed at 298 K with explicit
water for each of the 20 naturally occurring residues in the
Gly-Gly-X-Gly-Gly pentapeptide, which is a minimally invasive
host. For comparison, control simulations of an Ala dipeptide in
vacuo and in water are also presented. Ramachandran maps were
constructed, and the populations of the conformations were tab-
ulated for all simulations. To draw meaningful conclusions about
intrinsic conformational preferences of the amino acids, it is
important to obtain ergodic sampling, or in other words, that we
reach equilibrium. The simulations were continued long enough to
ensure convergence. To put the peptide results in context, we also
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compare conformational distributions of the amino acids in the
GGXGG pentapeptide with distributions obtained from simula-
tions of 188 different proteins with varied architectures and exper-
imental distributions from crystal and NMR structures.

Control Simulations. AA dipeptide: Effect of environment on conformational
properties. Because Ramachandran’s original work was based on
hard sphere space-filling models without solvent, we simulated the
Ala-Ala dipeptide without solvent and with all partial charges set
to zero. The distributions of (�,�) angles in the uncharged solvent-
free simulations are similar to the classically accepted Ramachan-
dran preferences (Fig. 1A), with the dominant populations occur-
ring in the �- and �-quadrants. The results are similar when water
is included, but the system remains uncharged [supporting infor-
mation (SI) Table S1] and Fig. 1B. However, there is a shift toward
helical/turn conformers (the �R and �L quadrants) when standard,
more realistic charges are used and water is included (Fig. 1C). The
populations are tabulated in Table S1 by quadrant and by the
specific conformational region [see labeled regions in Fig. 1 and
specific (�,�) definitions in Methods] for these different dipeptide
scenarios. These results show that it is important to consider the
environment: The picture provided by uncharged hard sphere in
vacuo Ramachandran maps may not be accurate for solvated
systems, particularly polar solvents (16). It is also noteworthy that
there is little change in the distributions upon doubling the sampling
from 50 to 100 ns (Table S1).
GGAGG: Sampling behavior. Before analyzing the conformational
properties of all 20 aa in depth, sampling and convergence must be
addressed. For an end-capped pentapeptide, we assume that each
(�,�) pair for the three internal residues can exist in four possible
conformations with respect to the quadrants in the Ramachandran
map, yielding 64 (43) possible conformational states. We exclude
the first and last residues and the capping groups, because they
appear to freely sample conformational space and are not neigh-
bors of the central Ala residue. The fractional population of each

of the 64 substates was compared among four independent
GGAGG simulations (Fig. S1). Consideration of the conforma-
tional properties of three residues instead of just the central residue
provides a much more sensitive and robust metric of convergence.

Over short time periods, the conformers sampled in two separate
simulations were unlikely to be the same (Fig. S1A ). However, as
sampling approached the ergodic limit, the 64 conformations
exhibited equivalent populations in two separate 100-ns trajectories
(Fig. S1B). One way to measure the sampling convergence is to plot
the correlation coefficient (R) of the conformer populations be-
tween two simulations (Fig. S1C). These two trajectories require
�100 ns for the substate populations to be correlated to �95%, and
at 50 ns, they are 90% correlated. Two additional trajectories
starting from very different structures converged at the same rate.
Based on these findings, all simulations were performed for 100 ns.
GGAGG: Analysis of conformational behavior. Fig. 1 shows a net surface
and the accompanying contour plot of the Ramachandran map of
Ala for the capped GGAGG peptide (Fig. 1 D and E). All points
sampled by Ala during the simulations are displayed (105 points per
100-ns simulation). There are peaks in three different quadrants.
The relative peak heights and volumes define Ala’s sampling
preferences. The same results are obtained in four independent
100-ns simulations. Ala spends �60% of its time in the �R-
quadrant, 32% in the �-quadrant, and 8% in the �L-quadrant
(Table 1).

The conformational space sampled by the peptide can be divided
more accurately to reflect the underlying local structure adopted
(Table 1), as discussed above. Also, given the large number of points
and sampling of many different conformations in this small Gly-rich
peptide, it can be helpful to convert the population scale into a free
energy surface (Fig. 1F). The central Ala residue prefers the helical
regions of (�,�) space, but the bulk of the conformers are shifted
from �R to the elbow region, or near the �R region, reflective of
turns and kinks. Nevertheless, the peptide was very dynamic and
covered 51% of the (�,�) space during the simulation (using 5° �

Fig. 1. Ramachandran maps for alanine in different contexts over 100-ns simulations. (A) Ala-Ala dipeptide in vacuo with all charges set to zero, i.e., only steric
effects are considered. (B) Ala-Ala dipeptide in water with all peptide and solvent charges set to zero. (C) Ala-Ala dipeptide in water with normal charges for
peptide and solvent. (D) Conformations sampled in a GGAGG simulation. (E) Same as D but displayed as a contour plot. (F) Free energy map for GGAGG calculated
from the populations in previous images.
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5° bins). Detailed breakdowns of the conformations sampled and
their populations over the 105 structures from each simulation are
presented in Table 1. Furthermore, these data are provided for the
four independent GGAGG simulations and the results are com-
parable (Table 1).

The GGAGG peptide has been probed in depth by NMR
experiments via proton and heavy atom chemical shifts (13, 14).
Chemical shifts were calculated over the simulations by using
ShiftX (17) for HN, H�, H�, �H, C�, C�, and C� for GGAGG are
very close to the corresponding experimentally derived values
(correlation coefficient R � 0.999 over 28 points, 7 atoms � 4
independent simulations). The calculated and experimental values
are provided in Table S2.

Another quantity from NMR that provides information regard-
ing the conformations sampled by MD is the vicinal spin–spin
coupling constant 3JNHC�, which depends on the torsion angle �
(18). The Karplus equation is typically used to estimate � from
3JHNC�:

3JNHC� � Acos2� � Bcos� � C, [1]

where � � � �	60° � (19). The coefficients differ depending on the
parameterization and folded protein reference set used. The dif-

ference between the calculated and experimental values is 0–2.2 Hz
(20), and a single coupling constant can map to four different �
values. Nevertheless, we have calculated the coupling constant for
Ala in the four independent GGAGG simulations by using the
Ludvigsen et al. (21) parameterization: A � 6.7, B � 	1.3, C � 1.5,
leading to 
3JHNC�� � 7.3 � 1.8 Hz. The experimental values for Ala
in GGXGG peptides range from 5.8 to 6.1 Hz (13–15). Although
our calculated value is high, it agrees with experiment within our
uncertainty.

The conformations sampled by Ala in the GGAGG peptide at
298 K by MD are not random and do not fully cover conformational
space, even though this small Gly peptide is a model for ‘‘random
coil’’ structures. Instead Ala has preferred conformations, namely
local �R, �L, �, and PII (quantified in Table 1), but these states are
dynamic and interconvert readily. These simulations illustrate the
potential problems associated with assuming a single or even
dominant conformation based on experimental observables over
large ensembles, and they call into question fitting procedures to
‘‘determine’’ populations, because different population distribu-
tions may reproduce the observables. Given the lack of repeating
secondary structure in this peptide, the lack of side chain interac-
tions influencing the local conformations populated, and the con-
vergence reached both within and among independent simulations,

Table 1. Conformational properties (population frequencies) of residue X in GGXGG in 100-ns simulations in water at 298 K

X sim #

By quadrant By specific conformational region

Q�R Q� Q�L Qo �R Near �R �L � PII Other % Coverage

* * * * * * * * *
Ala 1 58.3 35.8 5.6 0.4 23.5 26.1 4.4 22.3 15.7 19.4 51
Ala 2 59.5 32.9 7.1 0.4 23.6 27.3 5.7 19.0 14.2 19.8 51
Ala 3 61.3 30.4 8.0 0.4 25.1 27.6 6.6 17.8 13.3 18.9 50
Ala 4 54.8 34.7 10.1 0.5 21.6 25.1 8.4 21.2 15.4 19.3 53
Arg 1 65.4 26.6 8.0 0.1 27.9 29.8 7.1 18.8 12.2 14.5 43
Arg 2 69.0 21.2 9.7 0.2 29.5 31.1 8.8 15.2 9.8 14.1 45
Asn 1 80.2 17.9 1.8 0.1 40.3 34.7 1.5 13.6 7.3 8.6 38
Asn 2 81.4 15.2 3.4 0.1 41.2 34.8 3.0 11.1 6.0 8.6 39
Asp 1 77.1 17.8 4.9 0.1 30.9 42.6 4.5 3.9 5.1 14.4 30
Asp 2 74.9 17.9 7.0 0.1 30.9 41.0 6.6 4.7 4.5 14.0 31
Cyh 1 67.2 26.1 6.5 0.2 28.4 33.0 5.8 17.3 11.1 13.0 44
Cyh 2 71.9 24.5 3.4 0.2 31.1 34.6 2.9 16.7 10.1 12.5 43
Gln 1 58.8 26.2 14.8 0.2 26.6 25.5 13.5 18.9 12.0 13.8 44
Gln 2 67.3 23.2 9.3 0.1 29.1 30.4 8.6 15.9 9.8 14.3 43
Glu 1 62.5 30.5 6.2 0.7 31.7 23.6 5.8 22.6 14.4 14.5 45
Glu 2 57.8 32.8 9.3 0.1 29.2 21.6 8.7 24.9 15.1 13.8 44
Gly 1 43.1 9.4 37.3 10.2 16.5 5.5 9.8 7.2 4.8 60.0 76
Gly 2 46.5 9.0 35.5 9.0 18.2 6.7 9.2 6.3 4.3 58.5 76
Gly 3 36.2 9.8 44.5 9.5 13.3 5.1 12.8 7.3 4.8 60.4 75
Gly 4 43.3 10.0 37.8 8.9 16.8 5.5 10.0 7.6 4.9 59.1 76
His 1 65.2 25.4 9.3 0.1 24.7 33.3 8.1 17.7 10.7 14.1 43
His 2 61.0 26.2 12.5 0.2 23.3 31.4 10.8 18.8 10.5 13.8 46
Ile 1 54.5 45.4 0.0 0.0 15.9 29.5 0.0 31.3 21.3 22.0 29
Ile 2 49.9 48.8 1.3 0.0 17.5 23.4 1.2 39.2 27.4 17.6 32
Leu 1 70.1 24.6 5.2 0.1 35.6 27.2 4.3 20.1 12.5 11.9 41
Leu 2 73.7 20.7 5.6 0.1 37.2 29.3 5.0 16.9 10.4 10.8 39
Lys 1 74.2 21.1 4.6 0.1 32.7 33.0 4.2 14.7 9.1 14.1 42
Lys 2 68.1 24.9 6.9 0.1 30.2 30.1 6.2 18.2 11.3 13.7 43
Met 1 66.2 22.6 11.1 0.1 31.1 27.7 10.2 16.4 10.5 13.0 43
Phe 1 71.3 27.1 1.5 0.1 29.1 35.6 1.3 21.1 12.4 11.4 40
Pro 1 20.0 80.0 0.0 0.0 18.3 0.0 0.0 74.2 58.5 7.5 13
Ser 1 54.3 41.4 4.2 0.2 28.4 16.9 3.7 34.0 23.2 15.6 45
Thr 1 50.5 49.3 0.2 0.0 21.5 23.4 0.1 37.5 24.5 15.8 35
Trp 1 72.5 19.9 7.3 0.2 30.8 35.3 6.3 13.4 8.1 12.8 43
Tyr 1 64.5 25.9 9.4 0.3 25.6 32.9 8.2 18.8 10.6 13.0 46
Val 1 56.7 39.3 4.0 0.0 21.9 28.4 3.8 30.4 20.3 14.4 34

See Fig. 1.
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we believe that the distributions obtained reflect the intrinsic
conformational propensities of Ala. Consequently, we now expand
upon this work to investigate the other 19 amino acids.

Amino Acid Conformations in Different Structural Contexts. GGXGG
pentapeptides. Ramachandran plots were created for each of the
amino acids from the distribution of instantaneous � and � angles
in the GGXGG simulations (Fig. 2). The plots revealed that all of
the residues, except for Pro, exhibit a strong propensity for local
turns, as reflected in the populations of the �R and/or near-�R
regions. The �-helix peak is shifted from the strictly defined
�-helical region (Fig. 2), which occurs because what we observe is
not repeating structure, but the conformational properties of a
single residue. The �-sheet, �L, and PII conformations were also
populated to varying degrees (Table 1).

The most highly populated (�, �) angles for GGAGG were � �
(	175 to 	50) and � � (	55 to 	5), which we define as near-�R
(Figs. 1 and 2). The average � and � angles were 	110° � 41° and

	12° � 64°, respectively (calculated by using circular statistics).
Consideration of the average in light of the actual conformational
space sampled (Table 1 and Fig. 2) illustrates the problem of
describing mixed ensembles in this way. As with the GGAGG
peptide, we calculated proton and heavy atom chemical shifts over
our ensembles for all GGXGG peptides (Table S2). Overall, the
agreement between MD and experiment (14) is very good, with a
correlation coefficient of 0.9998 for 151 values (Table S3). The
agreement for NH is lower than for the other atoms, possibly
because of the difference in pH: MD was done at neutral pH and
the experiments were at pH 2.3 in 8 M urea. NH chemical shifts are
known to be very sensitive to pH, temperature, and environment
(13). The C� chemical shifts are very sensitive to conformation, and
the good agreement suggests that the MD-generated ensembles are
reasonable (R � 0.9879 for the 20 aa, Table S3). Another note-
worthy point is that the proton chemical shifts have been deter-
mined for the GGXGG peptide series under a variety of pH,
temperature, and solvent conditions, and the experimental results
are in good agreement with each other and with our MD-derived
values (R � 0.996) (Table S4).

For many of the residues (Asp, His, Phe, Trp, and Tyr), the near-
�R region was the most populated conformational state (Table 1).
As mentioned above, Ala sampled 51% of the (�,�) space (Table
1). Not surprisingly, the highest value was for Gly at 75% coverage.
The lowest was 13% for Pro, followed by �30% for Asp and Ile. For
comparison, the values for Ala and Gly at 498 K are 68 and 82%,
respectively (22).

Free energies were calculated for �R relative to all other con-
formations (Table S5). For example, for Ala, the PII content was
�15% in four independent simulations. Comparison of the popu-
lations yields GPII3�R � 	0.3 kcal/mol. In addition, the free
energy for helical conformers can be compared with experimentally
derived consensus helical propensities from experimental host–
guest studies of different peptide and protein ‘‘hosts’’ (Table S5)
(23). Contrary to most experiments, Ala did not have the highest
helical propensity; instead, Asn and then Leu displayed the stron-
gest helical propensities in the GGXGG peptides. In fact, 14 of the
amino acids had higher helical propensities than Ala.
Comparison of amino acid conformational preferences in peptides and
proteins. Fig. 2 shows a comparison of (�,�) populations for three
systems: (i) the GGXGG pentapeptides; (ii) MD simulations at 298
K of 188 native proteins with varying architecture from our
Dynameomics project (24); and (iii) 5,626 structures from the
nonredundant Astral40 Protein Data Bank (PDB)-derived data-
base (25). In the native simulations and the PDB, the amino acid in
question was not required to have flanking Gly residues. The
native-state MD simulations and the experimental structures sam-
ple very similar (�,�) regions, whereas the pentapeptides can have
quite different preferences (Fig. 2). The Pro and Thr distributions
are the most similar in the various simulations, or in other words,
they are the least sensitive to environmental influence. Most other
residues experienced shifts from the pentapeptide distributions,
reflecting the importance of context in determining conformation.
The large nonpolar residues (for example, Leu, Met, and Trp)
showed the greatest difference between the pentapeptide and
protein environments (Fig. 2). That these residues are more sen-
sitive makes sense, given that they are subject to conformational
constraints due to their burial in hydrophobic cores.

Intrinsic Conformational Preferences of Amino Acids. Most textbook
depictions of Ramachandran plots show almost equal populations
in the �R and � quadrants, with weaker populations in the �L
quadrant (Fig. 1A). Inclusion of water and realistic partial charges
on the atoms shift these distributions away from �-structure in the
peptide. The distributions for these same residues in simulations of
188 native proteins and in the PDB, however, have higher �
populations, reflecting the need for tertiary contacts to stabilize
such conformers (Table 1 and Fig. 2).

Fig. 2. Ramachandran plots (populations) for the 20 naturally occurring
amino acids in different environment contexts: GGXGG peptides, 188 native
proteins from our dynameomics set, and 5,626 structures from PDB. All points
are plotted over the 100-ns simulations of the peptides and 20-ns simulations
of the proteins (the first nanoseconds of all simulations was disregarded). The
percentage of points in a bin are colored as follows: 0 	 gray � 0.05; 0.05 	

green � 0.2; 0.2 	 blue � 0.4; 0.4 	 red � 0.8: 0.8 	 black.
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Although pentapeptides are not proteins and do not fold to or
stay within any one conformational state, they do sample some
substates preferentially. The dynamic nature of peptides and the
number of possible substates provide for a subtle comparison
between simulations and a test of sampling. Different trajectories of
the same system are unlikely to sample the same substates at any
given time, but averages over longer periods of time must converge.
That is, specific substates are favored and sampled preferentially
but given a long enough sampling time, the two trajectories should,
on average, provide the same populations for a given substate. We
found this to be the case provided the simulations were 50–100 ns.

The disparity in (�,�) distributions between isolated solvated
peptides and in the context of a folded protein is due primarily to
direct interactions with water and by packing constraints in pro-
teins. In both cases, the environment has a dramatic effect on the
so-called propensities. For example, the free energy for the �R
conformation in the GGXGG simulations is poorly correlated (R �
0.28) with the consensus helical propensity scale of Pace and
Scholtz (23). However, the correlation is much better for the
MD-generated free energy profiles of the native protein set (R �
0.84, or 0.92 excluding Pro) (Table S5). And, as expected from
experimental host–guest studies, Ala has the highest helical pro-
pensity in the protein set.

We believe that the GGXGG peptides in water approach the true
intrinsic conformational propensities of the amino acids, and the
host-guest-like studies in peptides and proteins reflect the ability of
a residue to fit within the structural environment provided by the
host’s scaffold. Likewise, the conformational preferences of pep-
tides are not good predictors of the conformations adopted in
proteins. That said, it is interesting that, although the distributions
and populations differ when comparing the amino acids, they are
not dramatically different. For example, consider the �-helix
‘‘breaker’’ valine. In an isolated pentapeptide, the �-helical state is
highly populated by Val (Fig. 2 and Table 1). However, when
moving to larger peptides and proteins (Fig. 2), Val is forced out of
the helical region because of interactions with neighboring residues.
This behavior is context-dependent: Val has no inherent problem
adopting helical (�,�) values. Similar arguments can be made for
other residues.

The ‘‘unstructured’’ or ‘‘coil’’ regions of proteins have been
analyzed independently of the more well ordered secondary struc-
ture (26–30). These analyses were aimed at obtaining intrinsic
conformational preferences of amino acids in contrast to prefer-
ences dictated by the role of the amino acids in protein structure,
packing and solubility. The exposed portions of the protein lacking
regular secondary structure, experience a striking increase in the
number of points in the �L region (30), as observed in our peptide
simulations. In agreement with our Val results, Griffiths-Jones et al.
(30) found that context is critical for �-structure, which is deter-
mined primarily by side chain interactions, as found in earlier
experiments (31).

Although our pentapeptide distributions are in better agreement
with the ‘‘coil’’ regions of proteins, such ‘‘coil’’ libraries still contain
conformational biases imposed by the protein. Also, one must be
careful how coil libraries are parsed. For example, Jha et al. (26)
claim that ‘‘the backbone preferentially adopts dihedral angles
consistent with the polyproline II conformation rather than � or �
conformations.’’ Yet, their own data show nearly equal populations
of the three conformers for their optimal library in which helix,
sheet, turn, and flanking residues are removed: 27.4, 32.9, and 35.5
for �, �, and PII basins, respectively. Furthermore, when only the
structured segments are removed (helix and sheet), helical popu-
lations are favored: 37.0, 23.2, and 33.2 for �, �, and PII, respectively.
Indeed, turns are an important component of denatured states of
proteins and warrant inclusion in a coil library. Their removal
appears to bias toward more extended segments, thereby increasing
the PII population. Overall, it seems most prudent to not ascribe
singular dominance to PII based on the coil library; no matter how

the structural segments are parsed, Table 1 of Jha et al. (26) shows
that the combined �R and � populations are substantially greater
than PII, and in fact the three are essentially comparable.

Furthermore, based on agreement between our protein results
and host–guest propensities and lack of agreement with the
GGXGG peptides and the longstanding use of GGXGG peptides
as models for the random coil state in the NMR community, we
believe that our simulations provide an improved description of the
true intrinsic conformational properties of the amino acids. Based
on our results, a shift from the so-called random coil values from
GGXGG peptides, which are assumed to reflect the shift from
random coil to more ordered structures, actually reflect consoli-
dation of structure from a more complicated ensemble of inter-
converting nonrandomly populated conformers.

Conclusions
Here, we present the results of MD simulations GGXGG in water
at 298 K to investigate the intrinsic conformational properties of the
twenty naturally occurring amino acids. Care was taken to ensure
that the peptide sampling was exhaustive, resulting in �4 
s of
sampling of the peptide (and another 4 
s of native protein
dynamics of 188 different proteins for comparison). Our results
indicate that the intrinsic conformational preferences long assumed
to determine secondary structure are weak. Instead, the effect of
neighboring groups, whether consecutive in sequence or brought
together in space, plays a critical role in determining the confor-
mational preferences of amino acids in proteins. The intrinsic
conformational preferences displayed by these pentapeptides are
closer to those observed in less structured regions of proteins, such
as those in ‘‘coil’’ libraries. However, even these ‘‘coil’’ distributions
are biased by the presence of the protein. Consequently, we have
compiled our pentapeptide data and constructed the Structural
Library of Intrinsic Residue Propensities, which is available at
www.dynameomics.org. Finally, the GGXGG peptides are com-
monly used as references for the random coil state for interpreta-
tion of NMR data. Here, we show that a the difference between the
properties of residue X in GGXGG vs. the system of interest is not
merely a shift from random coil to more ordered structures but
instead reflects consolidation of structure from a complicated
ensemble of interconverting nonrandomly populated conformers.

Methods
MD Simulations of Peptides. All peptide, protein, and solvent atoms were
explicitly present in all simulations. The peptide/protein and solvent force
fields have been presented (32–34). The MD simulations were performed by
using in lucem molecular mechanics (ilmm) with an 8-Å force-shifted non-
bonded cutoff (35). (Note that simulations using longer cutoffs provide the
same results, although convergence takes longer in some cases.) We used the
extended (� and � � 180°) conformation as a starting structure to avoid bias.
At least one simulation for each of the 20 amino acids within GGXGG was
performed. Multiple independent simulations were performed for the
GGAGG peptide to investigate sampling and convergence. All of the simula-
tions were performed with fixed ionization states to reflect neutral pH (Asp	,
Glu	, Lys�, Arg�, and His0) with acetylated and amidated N and C termini,
respectively. Also, control simulations of a capped Ala dipeptide were per-
formed both in vacuo with all partial charges set to zero and in water using
standard charges. All simulations were performed for 100 ns at 298 K. All
simulations, including the protein simulations below, were performed by
using the microcanonical NVE (constant volume, energy, and number of
particles) ensemble, which provides Boltzmann sampling of conformers.

MD Simulations of Native Proteins. Ramachandran plots of native protein
simulations were obtained from our ongoing Dynameomics project (www.dy-
nameomics.org), in which proteins and domains representing the most common
folds (36) are being simulated by using a standard protocol (24) and loaded into
ahybridrelationalmultidimensionaldatabase (37,38).Here,wereportdatafrom
simulations of 188 different proteins in water at 298 K. The simulations are all at
least 21 ns long with a mean simulation time of 30 ns. Details regarding the
proteins, the protocols, and validation have been presented (24). These proteins
represent �70% of the structures in the PDB.
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At the time these data were compiled, 188 proteins of the 1,130 eventual
Dynameomics targets were complete and had been thoroughly analyzed. This
resulted in a sample size of �3.76 � 106 structures, with (�,�) angles for 23,535
separateresiduesat1-psresolution.Theaminoacidcompositionofthiscombined
pool varied from a high of 2,014 Leu residues [4.0 � 107 (�,�) pairs] to a low of
329 Trp residues, or 6.6 � 106 total Trp (�,�) pairs. In total, 4.71 � 108 (�,�) pairs
were calculated and binned for the proteins.

PDB Analysis. Ramachandran plots of experimental protein structures were
generated from the Astral40 database. This database contains structures with
�40% sequence identity compiled by Chandonia et al. (25) (http://astral.berke-
ley.edu, http://astral.berkeley.edu/pdbstyle-1.65.html); 5,626 structures (files)
were used here. In all cases, if multiple structures existed in a file, only the first
structure was used. We considered 5,674 total .ent files, and 48 of those would
not parse, giving the 5,626 actually used. Those structures generated 989,001
(�,�) pairs, and those were separated by amino acid and binned as described
below.

Ramachandran Maps. (�,�) pairs were put into 72 � 72, 5° x 5° bins. The plots
were scaled by the total number of data points [i.e., (�, �) pairs], so that sampling

could be compared between simulations of different length. The fractional
population of bin i is defined as Pi � Ni/Ndata. The ‘‘coverage’’ was quantified by
dividing the number of sampled bins by the total number of bins (5,184 bins).
Also, by calculating the sum of the population in defined regions of secondary
structure and dividing the results by the total population, we determined the
frequency of each secondary structure. The defined regions were: �R: 	100° 	

� 	 	30°; 	80° 	 � 	 	5°; near �R: 	175° 	 � 	 	100°; 	55° 	 � 	 	5°; �L:
5° 	 � 	 75°; 25° 	 � 	 120°; �: 	180° 	 � 	 	50°; 80° 	 � 	 	170°; PII: PIIL,
	110° 	 � 	 	50°; 120° 	 � 	 180° and PIIR, 	180° 	 � 	 	115°; 50° 	 � 	 100°.
Note that the PII region is considered both by itself and as a part of the �-region,
so the sum of the populations can be greater than one.

Calculation of Free Energies. The free energy surfaces were generated by
calculating the free energy for each bin as: G � 	RT ln(Pi/(1 	 Pi)). The free
energy of unsampled bins is undefined and not displayed. We generated a helix
propensity scale and benchmarked our scale to the experimental values by
calculating the free energy of the �R conformation relative to all others.
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